
Hybrid Caching in .NET

Jody Donetti

DotNetConf Liguria 2025

Jody Donetti

Code + R&D

Faccio cose (principalmente) sul web da circa 30 anni.

Ho avuto a che fare con la maggior parte dei tipi di cache: memory,

distributed, hybrid, HTTP, offline e CDN.

Ho creato FusionCache, una hybrid cache .NET free + OSS.

 Google OSS Award

 Microsoft MVP Award

Caching: Mini Intro

 Caching: Mini Intro

Dunque, ridotto all’osso:

Cosa si intende per caching?

Il caching è una pratica.

 Caching: Mini Intro

I dati di cui abbiamo bisogno sono in una fonte dati, tipicamente un database.

Normalmente, quando abbiamo bisogno di un dato:

ogni richiesta: andiamo alla fonte (database)

Tutto molto lineare.

Ma un database è tipicamente più lento di una cache.

 Caching: Mini Intro

Quando facciamo caching:

prima richiesta (più lavoro): andiamo alla fonte (database, più lento) e salviamo in cache

richieste successive (meno lavoro): leggiamo dalla cache (più veloce)

Non dobbiamo usare caching sempre o per tutti i dati.

Dobbiamo usarlo solo per alcuni dati, quelli per cui ha senso (e.g.: scenari read-heavy).

Il segreto è trovare il giusto equilibrio.

Ok, fine.

Cache Stampede

 Cache Stampede

Immaginiamo questo scenario.

Arrivano richieste alla nostra app/servizio, tutte per gli stessi dati (non ancora nella cache) e tutte

contemporaneamente.

Senza alcuna cura particolare, ogni richiesta farebbe:

GET: lettura dalla cache

CHECK: cache hit/miss

FACTORY: database query

SET: scrittura nella cache

Bene ma non benissimo.

 Cache Stampede

Fondamentalmente, in caso di cache miss, abbiamo questo:

 Cache Stampede

Immaginiamo con 100, 1000 o anche più richieste concorrenti.

Un grande spreco di tempo, risorse e un rischio di overload per il nostro database.

E magari durante le ore di punta, in un Black Friday.

Perchè ovviamente, no?

Piacere di conoscerti Cache Stampede.

Quindi, cosa possiamo fare?

 Cache Stampede

Alcune librerie di cache, ma non tutte, hanno una protezione integrata per la Cache Stampede.

Lo fanno coordinando:

operazioni sulla cache (get/set)

esecuzione della factory (query database)

per la stessa cache key e nello stesso momento, tutto automaticamente

Ma dobbiamo dare loro la possibilità di proteggerci.

E come?

 Cache Stampede

Non facendo chiamate separate, che la cache non potrebbe coordinare:

 Cache Stampede

Ma facendo invece una chiamata singola passando una factory:

Questo permette alla cache di coordinare il tutto.

 NOTA: il metodo può chiamarsi anche GetOrCreate(), GetOrAdd(), etc

 Cache Stampede

In pratica passando da questo:

 Cache Stampede

A questo:

 Cache Stampede

È una forma di request coalescing, ossia: più richieste (logiche) si fondono in una sola (fisica).

Attenzione però, spesso si pensa che:

• SE la libreria fornisce un metodo GetOrSet(key, factory) o simile

• ALLORA la libreria protegge da cache stampede

Questo è falso.

 Cache Stampede

Per esempio:

MemoryCache: nessuna protezione, nemmeno con GetOrCreate()/GetOrCreateAsync()

FusionCache: protezione con GetOrSet()/GetOrSetAsync()

HybridCache: protezione con GetOrCreateAsync()

Ricordiamoci di controllare la libreria di cache che usiamo.

Ok, ma quindi hybrid caching?

Hybrid cosa?

Hybrid cosa?

Cos’è una "cache ibrida"?

E ha senso usarne una?

Per capirlo conosciamo i 3 tipi principali di cache:

memory cache

distributed cache

hybrid/multi-level cache

Le Memory Cache

Le Memory Cache

Le memory cache memorizzano i dati in memoria.

E non solo "in memoria", ma nella stessa memoria dell'applicazione che lo utilizza.

Pensiamole come un Dictionary<K,V> più qualche forma di eviction.

Le Memory Cache

Possiamo usarle così:

Le Memory Cache

Alcuni esempi di memory cache in .NET:

BitFaster.Caching

github.com/bitfaster/BitFaster.Caching

FastCache

github.com/jitbit/FastCache

fast-cache

github.com/neon-sunset/fast-cache

LazyCache

github.com/alastairtree/LazyCache

 Microsoft MemoryCache

Cold Start

 Cold Start

Ok, usiamo una memory cache.

Cosa succede quando la nostra app si riavvia?

Questo:

La cache in memoria torna ad essere vuota.

 Cold Start

Una memory cache è fondamentalmente un Dictionary<K,V>, e quindi va ripopolata ad ogni

riavvio dell’applicazione.

Questo significa più query verso il database.

Ok, altro?

Scalabilità Orizzontale

Scalabilità Orizzontale

Cosa succede se la nostra app è distribuita su più istanze/nodi/pod?

Questo:

Ogni istanza/nodo/pod ha la propria cache locale.

Scalabilità Orizzontale

Ogni istanza viene popolata prendendo i dati dal database.

Questo perchè i dati nella cache non sono condivisi.

E questo, di nuovo, significa più query verso il database.

Ok, cosa possiamo fare?

Le Distributed Cache

Le Distributed Cache

Le cache distribuite rappresentano key-value store remoti (Redis, Memcached).

Come un database ma più semplici, con meno feature: per questo molto più performanti:

Le Distributed Cache

In .NET è principalmente IDistributedCache e relative implementazioni:

Parlano in binario, tramite byte[].

Le Distributed Cache

In .NET è principalmente IDistributedCache e relative implementazioni:

Parlano in binario, tramite byte[].

Le Distributed Cache

Possiamo usarle così:

Quindi si: è necessario più codice.

Le Distributed Cache

Poiché le distributed cache sono remote, i dati vivono al di fuori della memoria dell’app.

Quindi:

• i cold start non svuotano la cache

• i dati vengono condivisi fra diversi nodi

Le Distributed Cache

Alcuni esempi di distribuited cache in .NET (implementazioni di IDistributedCache):

 EnyimMemcachedCore (per Memcached)

github.com/cnblogs/EnyimMemcachedCore

MongoDbCache (per MongoDB)

github.com/outmatic/MongoDbCache

NeoSmart.Caching.Sqlite (per SQLite, interessante!)

github.com/neosmart/SqliteCache

AWS. AspNetCore.DistributedCacheProvider (per Amazon DynamoDB)

github.com/aws/aws-dotnet-distributed-cache-provider/

Microsoft.Extensions.Caching.StackExchangeRedis (per Redis)

Usiamo Solo Distributed Cache?

Usiamo Solo Distributed Cache?

Usando direttamente una distributed cache dobbiamo considerare:

codice: più codice da scrivere/mantenere

performance: per ogni chiamata abbiamo network + serializzazione

availability: non sempre disponibile (Fallacies Of Distributed Computing)

cache stampede: nessuna protezione

E qui è dove entrano in gioco le hybrid cache.

Le Hybrid Cache

Le Hybrid Cache

Le hybrid cache sono le cache più avanzate.

Combinano insieme il meglio di entrambi i mondi: memory (L1) + distributed (L2).

La "danza" tra i due livelli è gestita automaticamente.

Le Hybrid Cache

Possiamo usarle così:

Le Hybrid Cache

Alcuni esempi di cache ibride/multi-livello in .NET:

 CacheTower (multi-level)

github.com/TurnerSoftware/CacheTower

 CacheManager (multi-level)

github.com/MichaCo/CacheManager

 EasyCaching (multi-level)

github.com/dotnetcore/EasyCaching

 FusionCache (hybrid)

github.com/ZiggyCreatures/FusionCache

 Microsoft HybridCache (hybrid)

Hybrid VS Multi-Level

Hybrid VS Multi-Level

Chiariamo un momento: sono simili, ma diverse.

In generale:

• multi-level: qualsiasi numero di livelli, ognuno di qualsiasi tipo

• hybrid: L1 (memory) o L1+L2 (memory+distributed)

Hybrid VS Multi-Level

Come sviluppatori, possiamo pensarle così (pseudo-codice):

Hybrid VS Multi-Level

Le cache ibride possono sembrare più «limitate», ma sono opinionate e, in effetti, più potenti.

Ecco perché:

• le limitazioni sono pragmatiche, senza impatti reali

• queste garantiscono basi più solide su cui costruire

• consentono un design più ricco con feature più avanzate

• offrendo comunque un controllo più granulare (x es: skip L1/L2 per-call)

• in generale funzionano, anche in scenari complessi

Tutto sommato, sono (imho) il giusto equilibrio.

Hybrid != L1+L2

 Hybrid != L1+L2

Usando una hybrid cache non siamo costretti a usare più livelli (L1+L2).

Possiamo anche usare solo L1:

Ok, ma... perché?

 Hybrid != L1+L2

Le cache ibride sono più high level.

Quindi, anche se dipende dalla libreria specifica, in generale possiamo aspettarci:

• più feature

• feature più avanzate

• observability

• etc

Ma soprattutto possiamo passare in modo transparente da uno a più livelli.

Il tutto senza cambiare il nostro codice.

 Hybrid != L1+L2

Ovvero: non importa se abbiamo un setup con solo L1...

 Hybrid != L1+L2

... o L1+L2 perché, in entrambi i casi...

 Hybrid != L1+L2

... possiamo semplicemente usare una singola API unificata:

 Hybrid != L1+L2

Fondamentalmente, per lavorare con solo L1:

 Hybrid != L1+L2

Mentre con L1+L2, di cui L2 su Redis e serializzazione Protobuf:

 Hybrid != L1+L2

E con L1+L2, di cui L2 su Memcached e serializzazione JSON:

 Hybrid != L1+L2

Il nostro codice rimane sempre lo stesso.

Non c'è bisogno di cambiarlo ovunque, solo una riga durante il setup.

Scenari:

• L1 sviluppo locale L1+L2 in staging/produzione

• L1 inizialmente (pochi utenti) L1+L2 quando arriva il successo (dobbiamo scalare)

Tutto senza toccare il nostro codice.

Una Hybrid Cache != HybridCache

Una Hybrid Cache != HybridCache

Oh, un'ultima cosa.

Quando diciamo "una memory cache" ci riferiamo al tipo di cache, in generale.

Non intendiamo necessariamente MemoryCache di Microsoft, giusto?

Ad esempio, BitFaster.Caching è anch’essa "una memory cache".

Una Hybrid Cache != HybridCache

Allo stesso modo, quando diciamo "una hybrid cache" ci riferiamo al tipo di cache, in generale.

Non intendiamo necessariamente HybridCache di Microsoft (2025).

Ad esempio, FusionCache (2020) è anch’essa "una hybrid cache".

Librerie

 Librerie

In questa sessione ci concentreremo su:

FusionCache HybridCache

FusionCache

FusionCache

Free + OSS

Easy to use, fast and robust hybrid cache with advanced

resiliency features.

github.com/ZiggyCreatures/FusionCache

36M download (15M)

3.3K

MIT License

Free

FusionCache

Avendo lavorato con la maggior parte dei tipi di cache, ho affrontato molti dei problemi reali che

emergono quando si lavora con caching.

E ho visto come prevenirli, quando possibile, e come mitigarli/risolverli, quando inevitabili.

La comunità OSS mi ha sempre dato molto: a volte ho contribuito un po' (patch, bug fix, etc) ma

mai in modo significativo.

Così ho deciso di provare a fare di più, e nel 2020 è nato FusionCache.

FusionCache

Il design:

• L1: usa IMemoryCache

• L2: usa IDistributedCache

Qualsiasi implementazione di IDistributedCache funziona: Redis, Memcached, SQLite,

MongoDB, etc (lista completa in online doc).

Gestisce in modo trasparente:

• uno o due livelli

• una o più istanze/nodi

senza cambiare nemmeno una riga di codice.

FusionCache

Setup (dopo aver installato il pacchetto):

 NOTA: si può anche fare direttamente new FusionCache() (non scontato...)

FusionCache

Si può anche configurare molto di più, grazie ad un fluent builder:

FusionCache

Come usarla:

FusionCache

Come usarla :

FusionCache

Come usarla :

FusionCache

Di base:

• il target è .NET Standard 2.0 (ovunque: vecchio .NET + nuovo .NET)

• è completamente sync + async (nessun sync-over-async)

• ricco set di opzioni: globali + entry + DefaultEntryOptions + ereditarietà

FusionCache ha molte feature per gestire esigenze e problemi reali.

FusionCache

Vedremo di più nella seconda sessione, ma per avere un’idea:

• Cache Stampede: protezione

• Fail-Safe: problemi temporanei con il database

• Eager Refresh: rallentamenti temporanei con il database

• Factory Timeout: rallentamenti temporanei con il database

• Backplane: notifiche istantanee su più istanze/nodi

• Named Caches: cache multiple, come HTTP Named Client ma per le cache

• Tagging: gestione gruppi/referenze

• Auto-Recovery: self-healing delle parti distribuite

• Observability: log, traces, metrics (supporto OTEL nativo)

FusionCache

Un sacco di documentazione, sia inline (IntelliSense) che online:

• introduzioni

• ogni feature, con design e dietro le quinte delle decisioni

• esempi

• diagrammi di flusso

• step by step (serve un po’ di caffè)

Sì, tengo molto alla documentazione

FusionCache

Ok, ma qualcuno usa FusionCache?

Un sacco di progetti, sia privati che OSS.

Molte aziende, dalle piccole alle decisamente grosse come Have I Been Pwned, Dometrain e

persino Microsoft stessa.

E a proposito di Microsoft: FusionCache è il motore di cache in Data API Builder (DAB).

FusionCache

FusionCache diventa a pagamento? No. Nada. Nein. Nope.

Sto solo restituendo un po' di ciò che ho già ricevuto dalla community OSS.

Cache Coherence

Cache Coherence

Supponiamo di essere in un setup L1+L2 su un ambiente multi-nodo:

Cache Coherence

Cosa succede quando un nodo modifica una entry?

La hybrid cache scrive sia su L1+L2:

Cache Coherence

... ma riguardo ad L1, viene aggiornata solo dove è stata eseguita l’operazione:

Cache Coherence

E se gli altri nodi avessero già quel dato nella loro L1 (memory)?

Cache Coherence

Succederebbe che le L1 negli altri nodi resterebbero col vecchio valore in cache:

Cache Coherence

A quel punto dovremmo aspettare che il dato scada normalmente tramite expiration.

E nel mentre?

Cosa avviene dopo l’update ma prima della expiration?

Cache Coherence

Una richiesta servita dal nodo 1 ritornerebbe il valore nuovo:

Cache Coherence

Mentre una richiesta servita dal nodo 2 o 3 ritornerebbe il valore vecchio:

Cache Coherence

Fondamentalmente, la cache nel suo insieme diventa incoerente.

Ossia fornisce, per la stessa domanda e nello stesso momento, risposte diverse

E questo è grave.

Cosa possiamo fare?

Backplane (FusionCache)

Backplane

Possiamo semplicemente usare un Backplane per far comunicare i nodi fra di loro:

Fatto.

Backplane

Passando così da una cache incoerente:

Backplane

Ad una cache sempre coerente, senza dover modificare il nostro codice:

Microsoft HybridCache

 HybridCache

All'inizio del 2024, Microsoft ha annunciato la propria HybridCache.

Probabilmente ne avete già sentito parlare, vero?

Beh, come direbbe Íñigo Montoya: non credo che significhi quello che pensi tu.

Vediamo...

 HybridCache

Il design:

• L1: usa IMemoryCache

• L2: usa IDistributedCache

Qualsiasi implementazione di IDistributedCache funziona: Redis, Memcached, SQLite,

MongoDB, etc (lista completa in online doc).

Gestisce in modo trasparente:

• uno o due livelli

• una o più istanze/nodi (*)

Design di FusionCache: validato

 HybridCache

Di base:

• il target è .NET Standard 2.0 (ovunque: vecchio .NET + nuovo .NET)

• set di opzioni: globali + entry + DefaultEntryOptions

Feature:

• Cache Stampede (*): protezione

• Tagging (*): gestione gruppi/referenze

 HybridCache

Ma soprattutto, è sia una 1st party shared abstraction che una default implementation.

Infatti:

• abstraction: public abstract class HybridCache (.NET 9)

• implementation: internal class DefaultHybridCache (.NET Extensions)

Avere una astrazione significa poter avere altre implementazioni.

 HybridCache

Possiamo pensare alla classe astratta HybridCache come all’interfaccia IDistributedCache.

Ossia:

• l’interfaccia IDistributedCache è una astrazione per generiche cache distribuite

• la classe astratta HybridCache è una astrazione per generiche cache ibride

E questo apre, come vedremo, scenari interessanti.

 HybridCache

Setup (dopo aver installato il pacchetto):

 HybridCache

Come usarla :

 HybridCache

Come usarla :

 HybridCache

Ho condiviso con il team suggerimenti, idee, criticità e... hanno ascoltato: fantastico

Grazie Marc Gravell e team!

Credo che lo sforzo fatto con HybridCache sia un ottimo esempio di come potrebbe essere

quando Microsoft e la comunità OSS hanno un dialogo costruttivo.

 HybridCache

Quindi, state già usando HybridCache?

Magari in produzione?

Ok, fate attenzione.

HybridCache: Limitazioni E Problemi
(fine 2025)

 HybridCache: Limitazioni E Problemi

Poiché l'attuale implementazione Microsoft è la primissima versione, presenta ancora alcune

limitazioni e problemi.

La maggior parte non è legata all'astrazione, ma solo alla attuale implementazione di default.

Alcuni sono minori, altri più gravi, quindi è importante conoscerli.

Vediamo.

 HybridCache: Limitazioni E Problemi

Ad oggi:

impossibilità di istanziazione diretta, solo DI

con DI, no controllo su L1/L2

con DI, singola istanza

async only

no metodi read-only

non deterministica su cache miss

incoerente con più nodi

Capiamo meglio questi punti?

Vediamo come risolverli?

 HybridCache: Limitazioni E Problemi

Si ma dopo pranzo, nella prossima sessione.

Ho fame

Recap

Le Memory Cache

Pro/Contro:

facile: facile da usare, meno codice

data locality: vicino al nostro stesso codice, nello stesso spazio di memoria

costo: nessuna network call, nessuna (de)serializzazione

availability: è sempre disponibile

stampede protection: spesso (dipende dalla caching library)

cold start: ad ogni riavvio la cache è vuota

scaling orizzontale: i dati non sono condivisi tra più nodi

Le Distributed Cache

Pro/Contro:

facile: meno facile da usare, gestione manuale (de)serializzazione, etc

data locality: i dati sono fuori processo, tipicamente remoti

costo: network call + (de)serializzazione

availability: potrebbe non essere sempre disponibile (o raggiungibile)

stampede protection: nessuna

cold start: ad ogni riavvio la cache è già popolata

scaling orizzontale: i dati sono condivisi tra più nodi

 Le Hybrid Cache

Pro/Contro:

facile: facile da usare

data locality: vicino al nostro stesso codice, nello stesso spazio di memoria (L1)

costo: nessuna network call e (de)serializzazione (L1) tranne la prima L1 CACHE MISS

availability: è sempre disponibile (L1)

stampede protection: probabilmente (dipende dalla caching library)

cold start: ad ogni riavvio L1 è vuoto, ma L2 è già popolata

scaling orizzontale: i dati sono condivisi tra più nodi (L2)

Inoltre: una API unificata e con più feature.

Il meglio di entrambi i mondi.

Grazie!

github.com/jodydonetti

twitter.com/jodydonetti

linkedin.com/in/jody-donetti

Su Dometrain:

Feedback, please

	Slide 1
	Slide 2: Jody Donetti
	Slide 3: Caching: Mini Intro
	Slide 4: 🩻 Caching: Mini Intro
	Slide 5: 🩻 Caching: Mini Intro
	Slide 6: 🩻 Caching: Mini Intro
	Slide 7: Cache Stampede
	Slide 8: 🛡️ Cache Stampede
	Slide 9: 🛡️ Cache Stampede
	Slide 10: 🛡️ Cache Stampede
	Slide 11: 🛡️ Cache Stampede
	Slide 12: 🛡️ Cache Stampede
	Slide 13: 🛡️ Cache Stampede
	Slide 14: 🛡️ Cache Stampede
	Slide 15: 🛡️ Cache Stampede
	Slide 16: 🛡️ Cache Stampede
	Slide 17: 🛡️ Cache Stampede
	Slide 18: Hybrid cosa?
	Slide 19: 🤔 Hybrid cosa?
	Slide 20: Le Memory Cache
	Slide 21: ⚡ Le Memory Cache
	Slide 22: ⚡ Le Memory Cache
	Slide 23: ⚡ Le Memory Cache
	Slide 24: Cold Start
	Slide 25: 🥶 Cold Start
	Slide 26: 🥶 Cold Start
	Slide 27: Scalabilità Orizzontale
	Slide 28: 🪜 Scalabilità Orizzontale
	Slide 29: 🪜 Scalabilità Orizzontale
	Slide 30: Le Distributed Cache
	Slide 31: ✈️ Le Distributed Cache
	Slide 32: ✈️ Le Distributed Cache
	Slide 33: ✈️ Le Distributed Cache
	Slide 34: ✈️ Le Distributed Cache
	Slide 35: ✈️ Le Distributed Cache
	Slide 36: ✈️ Le Distributed Cache
	Slide 37: Usiamo Solo Distributed Cache?
	Slide 38: Usiamo Solo Distributed Cache?
	Slide 39: Le Hybrid Cache
	Slide 40: 🚀 Le Hybrid Cache
	Slide 41: 🚀 Le Hybrid Cache
	Slide 42: 🚀 Le Hybrid Cache
	Slide 43: Hybrid VS Multi-Level
	Slide 44: 🚀 Hybrid VS Multi-Level
	Slide 45: 🚀 Hybrid VS Multi-Level
	Slide 46: 🚀 Hybrid VS Multi-Level
	Slide 47: Hybrid != L1+L2
	Slide 48: 🚀 Hybrid != L1+L2
	Slide 49: 🚀 Hybrid != L1+L2
	Slide 50: 🚀 Hybrid != L1+L2
	Slide 51: 🚀 Hybrid != L1+L2
	Slide 52: 🚀 Hybrid != L1+L2
	Slide 53: 🚀 Hybrid != L1+L2
	Slide 54: 🚀 Hybrid != L1+L2
	Slide 55: 🚀 Hybrid != L1+L2
	Slide 56: 🚀 Hybrid != L1+L2
	Slide 57: Una Hybrid Cache != HybridCache
	Slide 58: 🤔 Una Hybrid Cache != HybridCache
	Slide 59: 🤔 Una Hybrid Cache != HybridCache
	Slide 60: Librerie
	Slide 61: 📦 Librerie
	Slide 62: FusionCache
	Slide 63: 🦥 FusionCache
	Slide 64: 🦥 FusionCache
	Slide 65: 🦥 FusionCache
	Slide 66: 🦥 FusionCache
	Slide 67: 🦥 FusionCache
	Slide 68: 🦥 FusionCache
	Slide 69: 🦥 FusionCache
	Slide 70: 🦥 FusionCache
	Slide 71: 🦥 FusionCache
	Slide 72: 🦥 FusionCache
	Slide 73: 🦥 FusionCache
	Slide 74: 🦥 FusionCache
	Slide 75: 🦥 FusionCache
	Slide 76: Cache Coherence
	Slide 77: 😨 Cache Coherence
	Slide 78: 😨 Cache Coherence
	Slide 79: 😨 Cache Coherence
	Slide 80: 😨 Cache Coherence
	Slide 81: 😨 Cache Coherence
	Slide 82: 😨 Cache Coherence
	Slide 83: 😨 Cache Coherence
	Slide 84: 😨 Cache Coherence
	Slide 85: 😨 Cache Coherence
	Slide 86: Backplane (FusionCache)
	Slide 87: 📢 Backplane
	Slide 88: 📢 Backplane
	Slide 89: 📢 Backplane
	Slide 90: Microsoft HybridCache
	Slide 91: Ⓜ️ HybridCache
	Slide 92: Ⓜ️ HybridCache
	Slide 93: Ⓜ️ HybridCache
	Slide 94: Ⓜ️ HybridCache
	Slide 95: Ⓜ️ HybridCache
	Slide 96: Ⓜ️ HybridCache
	Slide 97: Ⓜ️ HybridCache
	Slide 98: Ⓜ️ HybridCache
	Slide 99: Ⓜ️ HybridCache
	Slide 100: Ⓜ️ HybridCache
	Slide 101: HybridCache: Limitazioni E Problemi (fine 2025)
	Slide 102: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 103: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 104: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 105: Recap
	Slide 106: ⚡ Le Memory Cache
	Slide 107: ✈️ Le Distributed Cache
	Slide 108: 🚀 Le Hybrid Cache
	Slide 109: Grazie!
	Slide 110: Feedback, please 🙂

