Hybrid Caching in .NET

Jody Donetti

DotNetConf Liguria 2025

Jody Donetti

Code + R&D
Faccio cose (principalmente) sul web da circa 30 anni.

Ho avuto a che fare con la maggior parte dei tipi di cache: memory,
distributed, hybrid, HTTP, offline e CDN.

Ho creato FusionCache, una hybrid cache .NET free + OSS.

= Google OSS Award
= Microsoft MVP Award

Ed Caching: Mini Intro

Dunque, ridotto all’'osso:

Cosa si intende per caching?

Il caching e una pratica.

Ed Caching: Mini Intro

| dati di cui abbiamo bisogno sono in una fonte dati, tipicamente un database.

Normalmente, quando abbiamo bisogno di un dato:
- ogni richiesta: andiamo alla fonte (database)

Tutto molto lineare.

Ma un database e tipicamente piu lento di una cache.

Ed Caching: Mini Intro

Quando facciamo caching:
- prima richiesta (piu lavoro): andiamo alla fonte (database, piu lento) e salviamo in cache

- richieste successive (meno lavoro): leggiamo dalla cache (piu veloce)
Non dobbiamo usare caching sempre o per tutti i dati.

Dobbiamo usarlo solo per alcuni dati, quelli per cui ha senso (e.g.: scenari read-heavy).

Il segreto e trovare il giusto equilibrio.

Ok, fine.

U Cache Stampede

Immaginiamo questo scenario.

Arrivano richieste alla nostra app/servizio, tutte per gli stessi dati (non ancora nella cache) e tutte
contemporaneamente.

Senza alcuna cura particolare, ogni richiesta farebbe:
« GET: lettura dalla cache

« CHECK: cache hit/miss

« FACTORY: database query

« SET: scrittura nella cache

Bene ma non benissimo.

© Cache Stampede

Fondamentalmente, in caso di cache miss, abbiamo questo:

GET

/product/1

GET

/product/1

GET

/product/1

GET

/product/1

GET

/product/2

GET

/product/2

GET

/product/2

GET

/product/2

‘J'V\PVVle/V

|

1INIS

r

1Y)

SELECT FROM Product WHERE Id 1
o >
SELECT FROM Product WHERE Id 1
o =
SELECT FROM Product WHERE Id 1
o >
SELECT FROM Product WHERE Id 1
o >
SELECT FROM Product WHERE Id 2
o >
SELECT FROM Product WHERE Id 2
o- =
SELECT FROM Product WHERE Id 2
= >
SELECT FROM Product WHERE Id 2
o =

ISVAvLVa

U Cache Stampede

Immaginiamo con 100, 1000 o anche piu richieste concorrenti.
Un grande spreco di tempo, risorse e un rischio di overload per il nostro database.

E magari durante le ore di punta, in un Black Friday.
Perche ovviamente, no?

Piacere di conoscerti Cache Stampede.

Quindi, cosa possiamo fare?

U Cache Stampede

Alcune librerie di cache, ma non tutte, hanno una protezione integrata per la Cache Stampede.
Lo fanno coordinando:
« operazioni sulla cache (get/set)

- esecuzione della factory (query database)

per la stessa cache key e nello stesso momento, tutto automaticamente

Ma dobbiamo dare loro la possibilita di proteggerci.

E come?

U Cache Stampede

Non facendo chiamate separate, che la cache non potrebbe coordinare:

var product . < >($"product:{id}");

if (is null)

{
(1d);

>($"product: {id}",

U Cache Stampede

Ma facendo invece una chiamata singola passando una factory:

var product = .

"product: {id}",

Questo permette alla cache di coordinare il tutto.

Ll NOTA: il metodo pud chiamarsi anche GetOrCreate(), GetOrAdd(), etc

© Cache Stampede

In pratica passando da questo:

GET

/product/1

GET

/product/1

GET

/product/1

GET

/product/1

GET

/product/2

GET

/product/2

GET

/product/2

GET

/product/2

‘J'V\PVVle/V

Wﬁ 7

|

|

|

[

|

|

o |
-
=1 =
— iEE

™

§f M~ l

|

|

|

|

|

|

| L

SELECT FROM Product WHERE Id 1
o >
SELECT FROM Product WHERE Id 1
o =
SELECT FROM Product WHERE Id 1
o >
SELECT FROM Product WHERE Id 1
- >
SELECT FROM Product WHERE Id 2
o >
SELECT FROM Product WHERE Id 2
o =
SELECT FROM Product WHERE Id 2
= >
SELECT FROM Product WHERE Id 2
o -

ISVAvLVa

© Cache Stampede

A questo:

GET /product/1

o >
GET /product/1

O ->
GET /product/1

o >
GET /product/1

4 >
GET /product/2

4 >
GET /product/2

O ->
GET /product/2

o >
GET /product/2

o >

W_' 7

|

|

|

[

|

|

|
-
=1 =
— ﬁfﬁ

™

{f ™™ l

|

|

|

|

|

)

| L

SELECT =
FROM Product
WHERE Id =1

L] L

SELECT =*
FROM Product
WHERE Id = 2

|

ISVAvLVa

© Cache Stampede

E una forma di request coalescing, ossia: piu richieste (logiche) si fondono in una sola (fisica).
Attenzione pero, spesso si pensa che:

« SE la libreria fornisce un metodo GetOrSet(key, factory) o simile

« ALLORA la libreria protegge da cache stampede

Questo e falso.

© Cache Stampede

Per esempio:

@ MemoryCache: nessuna protezione, nemmeno con GetOrCreate()/GetOrCreateAsync()
&4 FusionCache: protezione con GetOrSet()/GetOrSetAsync()

&4 HybridCache: protezione con GetOrCreateAsync()

Ricordiamoci di controllare la libreria di cache che usiamo.

Ok, ma quindi hybrid caching?

Hybrid cosa?

—

&~ Hybrid cosa?

Cos’e una "cache ibrida"?

E ha senso usarne una?

Per capirlo conosciamo i 3 tipi principali di cache:
« memory cache

« distributed cache
« hybrid/multi-level cache

Le Memory Cac

=15

¥ Le Memory Cache

Le memory cache memorizzano i dati in memoria.
E non solo "in memoria“, ma nella stessa memoria dell'applicazione che lo utilizza.

Pensiamole come un Dictionary<K, V> piu qualche forma di eviction.

L0CAL

APPLICATION £ MEMORY CACHE

() DATABASE

REMOTE

¥ Le Memory Cache

Possiamo usarle cosi:

var product =

$"product: {id}",

¥ Le Memory Cache

Alcuni esempi di memory cache in .NET:

@ BitFaster.Caching
github.com/bitfaster/BitFaster.Caching

& FastCache
github.com/jitbit/FastCache

& fast-cache
github.com/neon-sunset/fast-cache

@ LazyCache
github.com/alastairtree/LazyCache

@ Microsoft MemoryCache

Cold Start

¢+ Cold Start

Ok, usiamo una memory cache.
Cosa succede quando la nostra app si riavvia?

Questo:

APP APP

TART
(ACKE “_S_f (AGKE

La cache in memoria torna ad essere vuota.

¢+ Cold Start

Una memory cache e fondamentalmente un Dictionary<K, V>, e quindi va ripopolata ad ogni
riavvio dell’applicazione.

Questo significa piu query verso il database.

Ok, altro?

H Scalabilita Orizzontale

Cosa succede se la nostra app e distribuita su piu istanze/nodi/pod?

Questo:

SELECT #* FROM ... SELECT * FROM ... SELECT =+ FROM ...

C I ¢ ’
NODE L NODE ! NODE 3
CACHE CACHE CACHE

B | B B

Ogni istanza/nodo/pod ha la propria cache locale.

IS¥avLva

H Scalabilita Orizzontale

Ogni istanza viene popolata prendendo i dati dal database.
Questo perche i dati nella cache non sono condivisi.

E questo, di nuovo, significa piu query verso il database.

Ok, cosa possiamo fare?

<+ Le Distributed Cache

Le cache distribuite rappresentano key-value store remoti (Redis, Memcached).
Come un database ma piu semplici, con meno feature: per questo molto piu performanti:

(DE)SERTALLZATION

L0CAL

— APPLICATION |)

v o QV

DATABASE Z3 DISTRIBUTED CACHE

REMOTE

<+ Le Distributed Cache

In .NET e principalmente IDistributedCache e relative implementazioni:

public interface IDistributedCache
{
byte[]? (string)
Task<byte[]?> (string 5 = default);

void (string , byte[] value,
Task (string , byte[] value,

void (string)
Task (string = default);

void (string)
Task (string = default);

Parlano in binario, tramite bytel[].

<+ Le Distributed Cache

In .NET e principalmente IDistributedCache e relative implementazioni:

public interface IDistributedCache
{
byte[]? (sfring il
Task<byte[]?> (string 5 = default);

void (string ,Ibyte[] value,
Task (string , byte[] value,

void (string)
Task (string = default);

void (string)
Task (string = default);

Parlano in binario, tramite bytel[].

<+ Le Distributed Cache

Possiamo usarle cosi:

var payload J . ($"product: {id}");
if (is null)

(id);

($"product: {id}",

Quindi si: € necessario piu codice.

<+ Le Distributed Cache

Poicheé le distributed cache sono remote, | dati vivono al di fuori della memoria dell’app.
Quindi:
+ i cold start non svuotano la cache

i dati vengono condivisi fra diversi nodi

L2 (DISTRIBUTED)

)
i ! !

NODE 1 NODE NODE 3

ISvavLva

SELECT ~ FROM ...

o ?

<+ Le Distributed Cache

Alcuni esempi di distribuited cache in .NET (implementazioni di IDistributedCache):

@ EnyimMemcachedCore (per Memcached)
github.com/cnblogs/EnyimMemcachedCore

& MongoDbCache (per MongoDB)
github.com/outmatic/MongoDbCache

@ NeoSmart.Caching.Sqlite (per SQLite, interessante!)
github.com/neosmart/SqliteCache

@ AWS. AspNetCore.DistributedCacheProvider (per Amazon DynamoDB)
github.com/aws/aws-dotnet-distributed-cache-provider/

@ Microsoft.Extensions.Caching.StackExchangeRedis (per Redis)

Usiamo Solo Distributed Cache?

Usiamo Solo Distributed Cache?

Usando direttamente una distributed cache dobbiamo considerare:

-« codice: piu codice da scrivere/mantenere

- performance: per ogni chiamata abbiamo network + serializzazione

- availability: non sempre disponibile (Fallacies Of Distributed Computing)
« cache stampede: nessuna protezione

E qui e dove entrano in gioco le hybrid cache.

Le Hybrid Cache

=15

%~ Le Hybrid Cache

Le hybrid cache sono le cache piu avanzate.
Combinano insieme il meglio di entrambi i mondi: memory (L1) + distributed (L2).

La "danza" tra i due livelli e gestita automaticamente.

10CAL

2 APPLICATION | % 7 | &2 WRRIDCACKE | © | 4 L1 (MEMORY CACHE)

JT T4 (0F)SERTALIZATION
\fi \/J

© DATABASE %3 12 (DISTRIBUTED CACHE)

REMOTE

%~ Le Hybrid Cache

Possiamo usarle cosi:

var product =

"product:{id}",

%~ Le Hybrid Cache

Alcuni esempi di cache ibride/multi-livello in .NET:

& CacheTower (multi-level)
github.com/TurnerSoftware/CacheTower

@ CacheManager (multi-level)
github.com/MichaCo/CacheManager

@ EasyCaching (multi-level)
github.com/dotnetcore/EasyCaching

@ FusionCache (hybrid)
github.com/ZiggyCreatures/FusionCache

@ Microsoft HybridCache (hybrid)

%~ Hybrid VS Multi-Level

Chiariamo un momento: sono simili, ma diverse.

In generale:
« multi-level: qualsiasi numero di livelli, ognuno di qualsiasi tipo

* hybrid: L1 (memory) o L1+L2 (memory+distributed)

%" Hybrid VS Multi-Level

Come sviluppatori, possiamo pensarle cosi (pseudo-codice):

class HybridCache

class MultilLevelCache r
L

{

}

%~ Hybrid VS Multi-Level

Le cache ibride possono sembrare piu «limitate», ma sono opinionate e, in effetti, piu potenti.

Ecco percheé:

 le limitazioni sono pragmatiche, senza impatti reali

« queste garantiscono basi piu solide su cui costruire

e consentono un design piu ricco con feature piu avanzate

« offrendo comunque un controllo piu granulare (x es: skip L1/L2 per-call)

* In generale funzionano, anche in scenari complessi

Tutto sommato, sono (imho) il giusto equilibrio.

Hybrid != L1+L2

—=

%~ Hybrid '= L1+L2

Usando una hybrid cache non siamo costretti a usare piu livelli (L1+L2).

Possiamo anche usare solo L1:

S © APPLICATION | & 2 @ nmm ame | | 4 L1 (MEMORY CACHE)
4
v o

= O DATASE

Ok, ma... perché?

%" Hybrid != L1+L2

Le cache ibride sono piu high level.

Quindi, anche se dipende dalla libreria specifica, in generale possiamo aspettarci:
« piu feature

 feature piu avanzate

* observability

* etc
Ma soprattutto possiamo passare in modo transparente da uno a piu livelli.

|| tutto senza cambiare il nostro codice.

%~ Hybrid '= L1+L2

Ovvero: non importa se abbiamo un setup con solo L1...

L0CAL

2 APPLICATION £ NYBRID CACHE 4 11 (MEMORY CACHE)

() DATABASE

REMOTE

%~ Hybrid '= L1+L2

.. 0 L1+L2 perché, in entrambi i casi...

L0CAL

2 APPLICATION £ NYBRID CACHE 4 11 (MEMORY CACHE)

(DE)SERTALLZATION

(© DATABASE %4 L1 (DISTRIBUTED CACHE)

REMOTE

%~ Hybrid '= L1+L2

... possiamo semplicemente usare una singola API unificata:

L0CAL

(=) APPLICATION

& HYBRID CACHE

(5 DATABASE

REMOTE

%" Hybrid != L1+L2

Fondamentalmente, per lavorare con solo L1:

var product = .
"product: {id}",

%" Hybrid != L1+L2

Mentre con L1+L2, di cui L2 su Redis e serializzazione Protobuf:

var product = -
"product: {id}",

%" Hybrid != L1+L2

E con L1+L2, di cui L2 su Memcached e serializzazione JSON:

var product = -
"product: {id}",

%" Hybrid != L1+L2

Il nostro codice rimane sempre lo stesso.
Non c'e bisogno di cambiarlo ovunque, solo una riga durante il setup.

Scenart:
* L1 sviluppo locale L1+L2 in staging/produzione

* L1 inizialmente (pochi utenti) L1+L2 quando arriva il successo (dobbiamo scalare)

Tutto senza toccare il nostro codice.

Una Hybrid Cache != HybridCache

< Una Hybrid Cache != HybridCache

=

Oh, un'ultima cosa.

Quando diciamo "una memory cache"” ci riferiamo al tipo di cache, in generale.

Non intendiamo necessariamente MemoryCache di Microsoft, giusto?

Ad esempio, BitFaster.Caching e anch’'essa "una memory cache".

< Una Hybrid Cache != HybridCache

Allo stesso modo, quando diciamo "una hybrid cache" ci riferiamo al tipo di cache, in generale.

Non intendiamo necessariamente HybridCache di Microsoft (2025).

Ad esempio, FusionCache (2020) e anch’essa "una hybrid cache".

© Librerie

In questa sessione ci concentreremo su:

@ FusionCache =. HybridCache

FusionCache

<¥ FusionCache

Free + OSS

Easy to use, fast and robust hybrid cache with advanced
resiliency features.

github.com/ZiggyCreatures/FusionCache

36M download (15M)
1 33K

— MIT License

& Free

<¥ FusionCache

Avendo lavorato con la maggior parte dei tipi di cache, ho affrontato molti dei problemi reali che
emergono quando si lavora con caching.

E ho visto come prevenirli, quando possibile, e come mitigarli/risolverli, quando inevitabili.

La comunita OSS mi ha sempre dato molto: a volte ho contribuito un po' (patch, bug fix, etc) ma
mai in modo significativo.

Cosi ho deciso di provare a fare di piu, e nel 2020 e nato FusionCache.

<¥ FusionCache

Il design:
* L1:usa IMemoryCache
e L2:usa IDistributedCache

Qualsiasi implementazione di IDistributedCache funziona: Redis, Memcached, SQLite,
MongoDB, etc (lista completa in online doc).

Gestisce in modo trasparente:
* uno o due livelli

* una o piu istanze/nodi

senza cambiare nemmeno una riga di codice.

<¥ FusionCache

Setup (dopo aver installato il pacchetto):

B8 NOTA: si puo anche fare direttamente new FusionCache() (non scontato...)

<¥ FusionCache

Si puo anche configurare molto di piu, grazie ad un fluent builder:

<¥ FusionCache

Come usarla:

public class ProductController :

{

public

{
}

[("{id}")]
public

{

return .
"oroduct:{id}"

3

(TimeSpan.

<¥ FusionCache

Come usarla :

public

{

}

<¥ FusionCache

Come usarla :

return . (
"oroduct:{id}",

=7 ()3
=> . (TimeSpan.

<¥ FusionCache

Di base:
il target e .NET Standard 2.0 (ovunque: vecchio .NET + nuovo .NET)

« e completamente sync + async (nessun sync-over-async)
* ricco set di opzioni: globali + entry + DefaultEntryOptions + ereditarieta

FusionCache ha molte feature per gestire esigenze e problemi reali.

<¥ FusionCache

Vedremo di piu nella seconda sessione, ma per avere un’'idea:

« Cache Stampede: protezione

 Fail-Safe: problemi temporanei con il database

« Eager Refresh: rallentamenti temporanei con il database

» Factory Timeout: rallentamenti temporanei con il database

- Backplane: notifiche istantanee su piu istanze/nodi

 Named Caches: cache multiple, come HTTP Named Client ma per le cache
« Tagging: gestione gruppi/referenze

« Auto-Recovery: self-healing delle parti distribuite

« Observability: log, traces, metrics (supporto OTEL nativo)

w

=1 FusionCache

Un sacco di documentazione, sia inline (IntelliSense) che online:
* Introduzioni

« ogni feature, con design e dietro le quinte delle decisioni

* esempi

« diagrammi di flusso

* step by step (serve un po’ di caffe @)

Si, tengo molto alla documentazione &

<¥ FusionCache

Ok, ma qualcuno usa FusionCache?

Un sacco di progetti, sia privati che OSS.

Molte aziende, dalle piccole alle decisamente grosse come Have | Been Pwned, Dometrain e
persino Microsoft stessa.

E a proposito di Microsoft: FusionCache e il motore di cache in Data APl Builder (DAB).

<¥ FusionCache

FusionCache diventa a pagamento? No. Nada. Nein. Nope.

© Support

Nothing to do here.
After years of using a lot of open source stuff for free, this is just me trying to give something back to the community.
Will FusionCache one day switch to a commercial model? Nope, not gonna happen.

Mind you: nothing against other projects making the switch, if done in a proper way, but no thanks not interested.
And FWIW | don't even accept donations, which are btw a great thing: that should tell you how much I'm into this for
the money.

Again, this is me trying to give something back to the community.

If you really want to talk about money, please consider making % a donation to a good cause of your choosing, and
let me know about that.

Sto solo restituendo un po' di cio che ho gia ricevuto dalla community OSS.

£

@& Cache Coherence

Supponiamo di essere in un setup L1+L2 su un ambiente multi-nodo:

34 L2 (DISTRIBUTED CACHE)

NODE |
4 L1 (MEMORY CACHE)

NODE 1
£ L1 (MEMORY CACHE)

NODE 3

4 11 (MEMORY CACHE)

@ Cache Coherence

Cosa succede quando un nodo modifica una entry?

La hybrid cache scrive sia su L1+L2:

NODEL <
4 L1 (MEMORY CACHE)

T entry(vl)

3 L2 (DISTRIBUTED CACHE)

NODE 1
£ 11 (MEMORY CACHE)

entry(vl)

NODE 3

4 11 (MEMORY CACHE)

@ Cache Coherence

.. ma riguardo ad L1, viene aggiornata solo dove e stata eseqguita |'operazione:

3 L2 (DISTRIBUTED CACHE)

NODEL <
4 L1 (MEMORY (A(HE)

NODE 1
£ 11 (MEMORY CACHE)

entry(vl)

NODE 3

4 11 (MEMORY CACHE)

@ Cache Coherence

E se gli altri nodi avessero gia quel dato nella loro L1 (memory)?

34 L2 (DISTRIBUTED CACHE)

NODE |
4 L1 (MEMORY CACHE)

entry(vl)

NODE 1
£ L1 (MEMORY CACHE)

entry(vl)

entry(vl)

NODE 3

4 11 (MEMORY CACHE)

entry(vl)

@ Cache Coherence

Succederebbe che le L1 negli altri nodi resterebbero col vecchio valore in cache:

3 L2 (DISTRIBUTED CACHE)

NODEL <
4 L1 (MEMORY CACHE)

entry(v2)

NODE 1
£ 11 (MEMORY CACHE)

h entry(vl)

entry(v2)

NODE 3

4 11 (MEMORY CACHE)

h entry(vl)

@ Cache Coherence

A quel punto dovremmo aspettare che il dato scada normalmente tramite expiration.
E nel mentre?

Cosa avviene dopo l'update ma prima della expiration?

@ Cache Coherence

Una richiesta servita dal nodo 1 ritornerebbe il valore nuovo:

3 L2 (DISTRIBUTED CACHE) entry(v2)

NODEL NODED NODE 3

4 11 (MEMORY CACHE) 4 11 (MEMORY CACHE) 4 11 (MEMORY CACHE)

entry(v2) h entry(vl) h entry(vl)

@ Cache Coherence

Mentre una richiesta servita dal nodo 2 o 3 ritornerebbe il valore vecchio:

34 L2 (DISTRIBUTED CACHE)

NODE |
4 L1 (MEMORY CACHE)

entry(v2)

NODE 1
£ L1 (MEMORY CACHE)

h entry(vl)

entry(v2)

NODE 3

4 11 (MEMORY CACHE)

h entry(vl)

@ Cache Coherence

Fondamentalmente, la cache nel suo insieme diventa incoerente.

Ossia fornisce, per la stessa domanda e nello stesso momento, risposte diverse

E questo e grave.

Cosa possiamo fare?

5} Backplane

Possiamo semplicemente usare un Backplane per far comunicare i nodi fra di loro:

Fatto.

5} Backplane

Passando cosi da una cache incoerente:

NODE 1

3 L2 (DISTRIBUTED CACHE)

4 11 (MEMORY C(ACHE)

entry(v2)

NODE]
4 11 (MEMORY CACHE)

h entry(vl)

entry(v2)

NODE 3

4 11 (MEMORY CACHE)

h entry(vl)

5§ Backplane

Ad una cache sempre coerente, senza dover modificare il nostro codice:

3 L2 (DISTRIBUTED CACHE)

I 1 1

NODE 1 \[

4 11 (MEMORY C(ACHE)

entry(v2)

NODED
4 11 (MEMORY CACHE)

N\
entry(v2)

] entry(v2) I

Set(key, value)

NODE 3 l

4 11 (MEMORY CACHE)

I entry(v2)

W

&3 BACKPLANE

& HybridCache

All'inizio del 2024, Microsoft ha annunciato la propria HybridCache.

Probabilmente ne avete gia sentito parlare, vero?

Beh, come direbbe Ifligo Montoya: non credo che significhi quello che pensi tu.

Vediamo...

& HybridCache

Il design:
* L1:usa IMemoryCache
e L2:usa IDistributedCache

Qualsiasi implementazione di IDistributedCache funziona: Redis, Memcached, SQLite,
MongoDB, etc (lista completa in online doc).

Gestisce in modo trasparente:
* uno o due livelli

* una o piu istanze/nodi (*)

Design di FusionCache: validato &

& HybridCache

Di base:
il target e .NET Standard 2.0 (ovunque: vecchio .NET + nuovo .NET)
« set di opzioni: globali + entry + DefaultEntryOptions

Feature:
« Cache Stampede (*): protezione

« Tagging (*): gestione gruppi/referenze

& HybridCache

Ma soprattutto, e sia una 1st party shared abstraction che una default implementation.

Infatti:
« abstraction: public abstract class HybridCache (NET 9)

« implementation: internal class DefaultHybridCache (.NET Extensions)

Avere una astrazione significa poter avere altre implementazioni.

& HybridCache

Possiamo pensare alla classe astratta HybridCache come all'interfaccia IDistributedCache.

Ossia:
* l'interfaccia IDistributedCache e una astrazione per generiche cache distribuite

 la classe astratta HybridCache e una astrazione per generiche cache ibride

E questo apre, come vedremo, scenari interessanti.

& HybridCache

Setup (dopo aver installato il pacchetto):

& HybridCache

Come usarla :

public class ProductController :

("{id}")]
public async Task<
{
return await
"product:{id}",
async =>

& HybridCache

Come usarla :

& HybridCache

Ho condiviso con il team suggerimenti, idee, criticita e... hanno ascoltato: fantastico &

Grazie Marc Gravell e team!

Credo che lo sforzo fatto con HybridCache sia un ottimo esempio di come potrebbe essere
quando Microsoft e la comunita OSS hanno un dialogo costruttivo.

& HybridCache

Quindi, state gia usando HybridCache?

Magari in produzione?

Ok, fate attenzione.

HybridCache: Limitazioni E Problemi
(fine 2025)

& HybridCache: Limitazioni E Problemi

Poiche I'attuale implementazione Microsoft e la primissima versione, presenta ancora alcune
limitazioni e problemi.

La maggior parte non e legata all'astrazione, ma solo alla attuale implementazione di default.

Alcuni sono minori, altri piu gravi, quindi e importante conoscerli.

Vediamo.

& HybridCache: Limitazioni E Problemi

Ad oggqi:

- impossibilita di istanziazione diretta, solo DI
« con DI, no controllo su L1/L2

« con DI, singola istanza

« async only

« no metodi read-only

« non deterministica su cache miss
 incoerente con piu nodi

Capiamo meglio questi punti?

Vediamo come risolverli?

& HybridCache: Limitazioni E Problemi

Si ma dopo pranzo, nella prossima sessione.

Ho fame (=

¥ Le Memory Cache

Pro/Contro:

L4 facile: facile da usare, meno codice

&4 data locality: vicino al nostro stesso codice, nello stesso spazio di memoria
L4 costo: nessuna network call, nessuna (de)serializzazione

L4 availability: e sempre disponibile

L4 stampede protection: spesso (dipende dalla caching library)

@ cold start: ad ogni riavvio la cache & vuota

@ scaling orizzontale: i dati non sono condivisi tra pit nodi

<+ Le Distributed Cache

Pro/Contro:

@ facile: meno facile da usare, gestione manuale (de)serializzazione, etc
@ data locality: i dati sono fuori processo, tipicamente remoti

@ costo: network call + (de)serializzazione

@ availability: potrebbe non essere sempre disponibile (o raggiungibile)
@ stampede protection: nessuna

&4 cold start: ad ogni riavvio la cache & gia popolata

L4 scaling orizzontale: i dati sono condivisi tra pit nodi

% Le Hybrid Cache

Pro/Contro:

&4 facile: facile da usare

&4 data locality: vicino al nostro stesso codice, nello stesso spazio di memoria (L1)

&4 costo: nessuna network call e (de)serializzazione (L1) tranne la prima L1 CACHE MISS
L4 availability: e sempre disponibile (L1)

L4 stampede protection: probabilmente (dipende dalla caching library)

&4 cold start: ad ogni riavvio L1 & vuoto, ma L2 ¢ gia popolata

L4 scaling orizzontale: i dati sono condivisi tra piu nodi (L2)

Inoltre: una API unificata e con piu feature.

Il meglio di entrambi i mondi.

Grazie!

github.com/jodydonetti
twitter.com/jodydonetti

linkedin.com/in/jody-donetti

Su Dometrain:

CACHING

IN .NET

GETTING STARTED

by Jody Donettl “* Dometrain

Feedback, please &

	Slide 1
	Slide 2: Jody Donetti
	Slide 3: Caching: Mini Intro
	Slide 4: 🩻 Caching: Mini Intro
	Slide 5: 🩻 Caching: Mini Intro
	Slide 6: 🩻 Caching: Mini Intro
	Slide 7: Cache Stampede
	Slide 8: 🛡️ Cache Stampede
	Slide 9: 🛡️ Cache Stampede
	Slide 10: 🛡️ Cache Stampede
	Slide 11: 🛡️ Cache Stampede
	Slide 12: 🛡️ Cache Stampede
	Slide 13: 🛡️ Cache Stampede
	Slide 14: 🛡️ Cache Stampede
	Slide 15: 🛡️ Cache Stampede
	Slide 16: 🛡️ Cache Stampede
	Slide 17: 🛡️ Cache Stampede
	Slide 18: Hybrid cosa?
	Slide 19: 🤔 Hybrid cosa?
	Slide 20: Le Memory Cache
	Slide 21: ⚡ Le Memory Cache
	Slide 22: ⚡ Le Memory Cache
	Slide 23: ⚡ Le Memory Cache
	Slide 24: Cold Start
	Slide 25: 🥶 Cold Start
	Slide 26: 🥶 Cold Start
	Slide 27: Scalabilità Orizzontale
	Slide 28: 🪜 Scalabilità Orizzontale
	Slide 29: 🪜 Scalabilità Orizzontale
	Slide 30: Le Distributed Cache
	Slide 31: ✈️ Le Distributed Cache
	Slide 32: ✈️ Le Distributed Cache
	Slide 33: ✈️ Le Distributed Cache
	Slide 34: ✈️ Le Distributed Cache
	Slide 35: ✈️ Le Distributed Cache
	Slide 36: ✈️ Le Distributed Cache
	Slide 37: Usiamo Solo Distributed Cache?
	Slide 38: Usiamo Solo Distributed Cache?
	Slide 39: Le Hybrid Cache
	Slide 40: 🚀 Le Hybrid Cache
	Slide 41: 🚀 Le Hybrid Cache
	Slide 42: 🚀 Le Hybrid Cache
	Slide 43: Hybrid VS Multi-Level
	Slide 44: 🚀 Hybrid VS Multi-Level
	Slide 45: 🚀 Hybrid VS Multi-Level
	Slide 46: 🚀 Hybrid VS Multi-Level
	Slide 47: Hybrid != L1+L2
	Slide 48: 🚀 Hybrid != L1+L2
	Slide 49: 🚀 Hybrid != L1+L2
	Slide 50: 🚀 Hybrid != L1+L2
	Slide 51: 🚀 Hybrid != L1+L2
	Slide 52: 🚀 Hybrid != L1+L2
	Slide 53: 🚀 Hybrid != L1+L2
	Slide 54: 🚀 Hybrid != L1+L2
	Slide 55: 🚀 Hybrid != L1+L2
	Slide 56: 🚀 Hybrid != L1+L2
	Slide 57: Una Hybrid Cache != HybridCache
	Slide 58: 🤔 Una Hybrid Cache != HybridCache
	Slide 59: 🤔 Una Hybrid Cache != HybridCache
	Slide 60: Librerie
	Slide 61: 📦 Librerie
	Slide 62: FusionCache
	Slide 63: 🦥 FusionCache
	Slide 64: 🦥 FusionCache
	Slide 65: 🦥 FusionCache
	Slide 66: 🦥 FusionCache
	Slide 67: 🦥 FusionCache
	Slide 68: 🦥 FusionCache
	Slide 69: 🦥 FusionCache
	Slide 70: 🦥 FusionCache
	Slide 71: 🦥 FusionCache
	Slide 72: 🦥 FusionCache
	Slide 73: 🦥 FusionCache
	Slide 74: 🦥 FusionCache
	Slide 75: 🦥 FusionCache
	Slide 76: Cache Coherence
	Slide 77: 😨 Cache Coherence
	Slide 78: 😨 Cache Coherence
	Slide 79: 😨 Cache Coherence
	Slide 80: 😨 Cache Coherence
	Slide 81: 😨 Cache Coherence
	Slide 82: 😨 Cache Coherence
	Slide 83: 😨 Cache Coherence
	Slide 84: 😨 Cache Coherence
	Slide 85: 😨 Cache Coherence
	Slide 86: Backplane (FusionCache)
	Slide 87: 📢 Backplane
	Slide 88: 📢 Backplane
	Slide 89: 📢 Backplane
	Slide 90: Microsoft HybridCache
	Slide 91: Ⓜ️ HybridCache
	Slide 92: Ⓜ️ HybridCache
	Slide 93: Ⓜ️ HybridCache
	Slide 94: Ⓜ️ HybridCache
	Slide 95: Ⓜ️ HybridCache
	Slide 96: Ⓜ️ HybridCache
	Slide 97: Ⓜ️ HybridCache
	Slide 98: Ⓜ️ HybridCache
	Slide 99: Ⓜ️ HybridCache
	Slide 100: Ⓜ️ HybridCache
	Slide 101: HybridCache: Limitazioni E Problemi (fine 2025)
	Slide 102: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 103: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 104: Ⓜ️ HybridCache: Limitazioni E Problemi
	Slide 105: Recap
	Slide 106: ⚡ Le Memory Cache
	Slide 107: ✈️ Le Distributed Cache
	Slide 108: 🚀 Le Hybrid Cache
	Slide 109: Grazie!
	Slide 110: Feedback, please 🙂

